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ABSTRACT

A new method of array modeling which will be used to predict
the performance of low frequency active sonar arrays is being
investigated. In support of this effort, a network representation of
a spherical shell piezoelectric transducer was developed. The
transducer was modeled using the finite-element code MARTSAM,
from which a nodal description of the transducer was obtained. A
procedure was developed to reduce and transform the nodal
description of the transducer into a spherical harmonic description.
The spherical harmonic description of the transducer was computed
at two frequencies, 112.5 Hz and 1125.3 Hz, corresponding to values
of ka of 0.1 and 1.0, respectively, where a is the radius of the

sphere.
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. INTRODUCTION

The objectives of the research detailed in this thesis are: 1) to
produce a nodal description of a spherical shell, piezoelectric
transducer using finite-element modeling, and 2) to develop a
procedure to transform the nodal description of the transducer into
a spherical harmonic description.

This report is organized in three main sections. First, a new
method to predict the performance of low frequency active arrays,
which provided the motivation for this research, is described. Next,
the finite-element modeling and description in terms of spherical
harmonics of a particular spherical shell transducer are detailed.
Numerical results are included for the transducer operating at 112.5
Hz and 1125.3 Hz, corresponding to values of ka of 0.1 and 1.0,
respectively, where a is the radius of the sphere. Lastly, the
procedure to reduce and transform the nodal description of the

transducer to a spherical harmonic description is described.




. MODELING OF LOW FREQUENCY ACTIVE ARRAYS

A. BACKGROUND

The trend toward operation of sonar surveillance systems at
lower frequencies has necessitated larger, more dense arrays of
transducers. This transition has prompted investigation of a new,
potentially more efficient, method to predict array performance.
This new method of array modeling combines a finite-element
representation for each transducer with a mathematical
representation of the acoustic field which is equivalent to the
T-matrix method which has been applied to elastic scattering
problems [Ref. 1]. This approach is explained in greater detail in -
Appendix A. It has the feature that it accounts for the effects of
'multiple-scattering', which can be quite significant in dense arrays
(the distortion of the near-field radiation pattern of a transducer
due to a nearby transducer, for example, is a manifestation of
multiple-scattering). Applying this method to an array of
transducers will ultimately yield a matrix which relates the
outgoing acoustic waves to the input electrical excitation of each
transducer.

Figure 1 is a schematic diagram of a portion of an array. In

this method, the modeling problem is divided into two regions. The
term structure refers to the transducer plus some surrounding fluid

out to an imaginary, spherical surface, S. The second region is the
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fluid outside of S. The array may be composed of any numher and/or
variety of tranducers. Additionally, it may have any geometry.

The goal is to develop an analytical representation of the
structure from a finite-element model and to combine it with an
analytical representation of the acoustic field in the fluid to predict
the performance of an array of interacting transducers. By
separately modeling the structure and the fluid, this approach will
simplify the complex task of array modeling. Changing the geometry
of an array will require recomputing only the fluid model. Likewise,
maintaining the geometry and changing the type of transducer will

require a new representation of only the sructure.

B. FLUID REPRESENTATION

The acoustic pressure field in the unbounded fluid is
represented as an eigenfunction expansion in terms of spherical
waves. It should be noted that all quantities are assumed to vary
harmonically with time. This representation is convenient due to
the spherical shape of the structures. Figure 2 is the radiation
pattern which is produced by three pulsating spherical elastic shelis
of radius a, with one half wavelength separation and ka equal to 1.0.
Each shell is driven with a uniform pressure amplitude on the inside
of the surface of the strength indicated by the number inside. The
curves shown represent the radiation pattern when the number of
spherical harmonics retained in the expansion is varied. The curves

which include the first 6, 9, and 11 harmonics are indistinguishable;
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therefore, the acoustic field may be accurately described by

retaining only about 6 spherical harmonics. [Ref.2]

C. STRUCTURE REPRESENTATION

The structure must be spherical in shape; it may be a
transducer with some surrounding fluid or simply a spherical
transducer. The structure is first modeled using a finite-element
code, which produces a nodal description of the structure. The nodal
description is then reduced and transformed into a spherical
harmonic description of the structure. This description can then be
combined with the spherical harmonic description of the acoustic
field on the surface of each sphere to predict the behavior of the

array.




ll. MODELING OF SPHERICAL SHELL TRANSDUCER

A. FINITE ELEMENT MODEL

A spherical shell piezoelectric transducer was modeled using
the finite element code MARTSAM. Figure 3 is the finite element
mesh used to model the transducer. The transducer is radially
polarized Navy Type 1 ceramic with an outer radius of 7.620
centimeters and thickness of 0.762 centimeters. It is symmetric
about the y-axis. Based on this symmetry, it was only necessary to
create a two-dimensional model of one haif of the transducer. The
structure was divided into 60 six-noded triangular elements. This
partitioning scheme results in a mesh with 183 nodes. There are
two mechanical degrees of freedom associated with each node
except the six nodes along the y-axis. Boundary conditions were
applied to set the motion of these nodes in the x-direction equal to
zero. Consequently, this structure possesses a total of 360
mechanical degrees of freedom. Additional boundary conditions
included grounding the electrode on the outer surface of the sphere
while maintaining a constant potential on the inner electrode. The

structure, therefore, has one electrical degree of freedom.

B. MARTSAM OUTPUT
A modal analysis of the structure was performed by Dr. Michele

McCollum of the Naval Research Laboratory, Orlando using the finite-
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Figure 3: Finite Element Mesh of Spherical Shell
Transducer.




element code MARTSAM. For this particular application, the code
was used to generate (Kuu), (M) and K,y which can be substituted

into the following set of equations:

( () - 02(M) Ko )(g).= ). @

where

U and F are vectors that contain the nodal values of

the displacement field and the applied forces,

V is the applied electrical potential,

Q is the electrical charge on the structure,
(Kuu) is the matrix which describes the effect that the

stiffness at each node has on all the nodes,

. (M) is the matrix, which describes the effect that the
mass at each node has on all the nodes,

« Kyv is the vector that contains the coupling coefficients
that relate the mechanical and electrical degrees of
freedom,

» Kyv is the capacitance of the transducer for zero
displacement everywhere,

« o is the angular frequency,

« T means transpose,




to completely describe the spherical shell transducer in terms of its
nodes at a specified frequency. The matrix of the left side of
equation (3.1) has dimension 361 by 361 for this structure.

By means of matrix algebra, which is outlined in Chapter 1V,
this nodal description of the structure was reduced. The mechanical
degrees of freedom associated with the nodes internal to the
structure were eliminated as the external force on those nodes is
zero. The displacements at the surface nodes were transformed
from the Cartesian coordinate system to the polar coordinate
system. The degrees of freedom associated with the paralliel
displacements were also eliminated as external fluid forces are
applied normal to the surface. The dimensions of the reduced matrix
are 62 by 62, 61 surface normal displacement degrees of freedom

and 1 electrical degree of freedom.

C. SPHERICAL HARMONIC DESCRIPTION OF STRUCTURE
Following the procedure detailed in Chapter 1V, the reduced
nodal description of the transducer was transformed into a spherical
harmonic description. Since the finite-element model is restricted

to axisymmetric solutions for field quantities, the Legendre
polynomials were used for the spherical harmonic functions. Based
on the results obtained by Canright and Scandrett [Ref. 2], the first 7
Legendre polynomials were used. The spherical harmonic description
of the structure is an 8 by 8 matrix. Figures 4 and 5 are the

electrodynamic matrices obtained for the frequencies 112.5 and

10




1125.3 Hz, respectively, corresponding to values of ka of 0.1 and 1.0,

respectively, where a is the radius of the structure. These
matrices, (Dsph) are used in the following set of equations:

(o) ()= ("‘5") (3:2)

where USPh and gsPh are vectors that contain the values of the
displacement field and stress field in terms of Legendre polynomials
(n=0,1,2...6), to describe the transducer. Most of the elements in
these matrices are on the order 108 - 1010, These numbers
represent mechanical interactions while the elements in the last
row and column (on the order of 10-5 - 10) represent the mechanical
and electrical coupling. The element in the last row and column is

the (surface only) blocked capacitance.

11
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IV. TRANSFORMATION PROCEDURE

A. REDUCED NODAL DESCRIPTION

Matrix equation (3.1), for simplicity, can be represented by
(Dnod) ynod = fnod, (4.1)

where
. (Dmd) is the square dynamical matrix,

- Unod is the vector containing the displacement field
and the electrical potential, and
« Fnod js the vector containing the applied force field

and the electrical charge.

The dimensions of the dynamical matrix are quite large for even the
simplest transducer. In modeling the fluid-loaded structure,
however, the size of this description can be greatly reduced by
applying matrix algebra as the following procedure describes. In
performing this reduction, the accuracy of the description is not
diminished since the fiuid forces act only at the surface bounding
the structure.
1. Forces and Internal Nodes
Enod s initially a column vector whose entries are the force

applied to each node listed by ascending node number and direction

14




followed by the electrical charge. However, the applied force is
zero at all the nodes that are internal to the structure as those
nodes are inaccessible to the surrounding fluid. En"od is rearranged so
that all the zero entries come first. When Fnod  the vector on the
right hand side of the equation, is reordered, the rows of the
dynamical matrix on the left side of the equation must be rearranged
accordingly. Un°d must also be reordered in the same manner as Fned
which necessitates a corresponding rearranging of the columns of
the dynamical matrix.

2. Transformation of Coordinate System

MARTSAM describes the transducer in terms of Cartesian

coordinates. A transformation matrix, (T) can be defined for each

surface node such that it performs the following operations:

(&)= (o) anc

(B)-(m (). 2

where, respectively,

U, and U, are the displacements in the x- and y-directions,

Ex and Fy, are the applied forces in the x- and y-directions,

Uperp and Up,r are the displacements in the directions

perpendicular and parallel to the surface, and

15




* Eperp and Fpar are the applied forces in the directions

perpendicular and parallel to the surface.

For the mesh shown in Figure 3, for a single element,
sin®@  -cos6 X -Y
(T) = ( cos®  sin® )' R ( Y X ) (4.3)

where

« 0 is the angle each surface node makes with the positive

y-axis,

« X and Y are the Cartesian coordinates of each node, and

R is the radially distance of each node from the center of
the sphere.

Substituting equations (4.2) into equation (4.1) yields

(Dod) (T) ypolar = (T) Epolar, (4.4)

where the vectors U and F are now expressed in terms of polar

coordinates. Multiplying each side of equation (4.4) by the inverse of
(T) gives

(T)" (D“"d) (T) ypolar _Fpolar (4.5)

16




where (T)-1 (Dmd) (T) represents the dynamical matrix in terms of

nodes and the polar coordinate system.
3. Forces and Parallel Direction
The elements of EPolar are arranged as follows: the forces
applied to the internal nodes, the forces applied in the directions
perpendicular to the transducer at the surface nodes and parallel to
the transducer at the surface nodes, and the electrical charge.
However, since only the forces applied normal to the transducer are
non-zero, Fpar is the null vector. Using the procedure described in
section 1, Fpolar and Upolar must be reordered such that Epar and Upar
precede Fperp and Uperp. The rows and columns of the dynamical
matrix must be rearranged accordingly.
4. Reduction of Dynamical Matrix
The procedures in sections 1, 2 and 3 have arranged the
dynamical matrix into the proper form to be reduced using matrix

algebra. The matrix equation is now in the form

(10 €A ) o)~ Epery): o

where
. (UL)(LR)(LL)(LR) are subdivisions of the
dynamical matrix,
+ U, is the displacements at the internal nodes and in the

direction parallel to the surface nodes,

17




* Uperp is the normal displacements and the electrical
potential,

* 0 is the null vector, and

* Eperp are the forces applied normal to the surface and the

electrical charge.

The corresponding simultaneous equations are

(UL) Yo + (UR) Uperp =0 , and (4.7)

(LL) Uo + (LR) Uperp = Eperp - (4.8)
Solving equation (4.7) for Uy yields

Uo=- (L)' (WR) Yperp - (4.9)
Substituting equation (4.9) into equation (4.8) gives

( (LR)- (LL) (UL) 1("'R)) Uperp = Eperp, (4.10)

where ( (LR) - (LL) (W) 1(LR)) is the reduced dynamical matrix

describing nodal interactions. This matrix is square, and its
dimension is the number of surface nodes plus the electrical degree

of freedom. The computer code, which computes the reduced

18




dynamical matrix for the spherical shell transducer described in
Chapter Ill, is listed in Appendix B [Ref. 3:p. 38].

B. TRANSFORMATION TO SPHERICAL HARMONIC DESCRIPTION
The reduced nodal description of the transducer given by

equation (4.10) can be written as

( (;Egdr) Kén; ](u:/w )=(Encgd) (4.11)

where
. (D329 is the reduced (Kw) - 2 (M) matrix,
» Knod js the reduced vector containing the coupling
coefficients that relate the mechanical and electrical

degrees of freedom,

Ces is the (surface only) blocked capacitance,

ynod s the vector containing normal displacements,

V is the electrical potentiai,

Fnod js the vector containing the forces applied normal to

the surface,

Q is the electrical charge, and

T means transpose.

A spherical harmonic description of the transducer can be obtained,

in the form

19




(Dsph) ysph = gsph | (4.12)

by performing the following tranformations.
1. Transformation of Yynod to Usph
The surface normal displacement distribution can be written

as

N
U(e) = 2URY Np(e) (4.13)
n

where UR°? = U(@ = 6p) , and N(8) is the finite-element interpolation
function where Np(0) = 8(0 = 8) [Ref. 4]. Since the finite-element
model created to represent the trarscucer in this investigation is
restricted to axisymmetric soiutions for all field quantities, the
Legendre polynomials were chosen for the set of harmonic functions.
The surface normal displacement distribution can then be expressed

approximately by a truncated series as

M
u(e) = %U?}?" Pm(cos6) , (4.14)

R
where UR" = (1/Cm) [U(8) Pm(cos8) siné d6 and Cm = [(Pm)2 sine dS,
0

the usual normalization constant associated with Py For the

20




Legendre polynomials, Cm = (21+1)/2 where | is the order. From
equations (4.13) and (4.14), it follows that

M
h
URod = JUP" P (cose=cosep) . (4.15)
m

Equation (4.15) expressed in matrix form is

ynod = (P) ysph, (4.16)

where the matrix elements Ppm = Pp(cosé=cosep) .
2. Transformation of Fnod to gsph

The self-consistent force at node n due to a distributed

stress o is given by

Faod = [oNpdS, (4.17)

where the integration is performed over the surface of the
structure. The distributed stress can be expanded similarly to the

displacement as

M
0(8) = 20" Pp(cose) . (4.18)
m

21




The dynamical equation describing the transducer in terms of gspPh

follows from the equation for the coefficients of the expansion of

the stress field in the Legendre polynomials:

" = (1/Cm) Jo Pm sine dS. (4.19)
The expansion,
N
Pm(8) = 2.Pnm Nn, (4.20)
n

where Pnm = Pm(8n), can be made. Substitution of equation (4.20)

into equation (4.19) gives

N
K" = (1/Cm) Y. (JoNndS) P . (4.21)
n

Using equation (4.17), equation (4.21) becomes

N
o3P" = (1/Cm) %FR“ Pmn . (4.22)

In matrix form, equation (4.22) can be written

gsPh = (C)-1 (P)TEnod, (4.23)

22




where
+ () = dig (Cn).
. (P) nm = Pm(cos®p), and
+ Fi%= [oNqds.

Equation (4.23) is the desired expression relating gsPh to Fnod,

Matrix equation (4.11) can be expressed as
(D329) ynod + Knod v = Enod | and (4.24)
Knod T yred . Ceg V=Q. (4.25)
Substitution of equation (4.24) into equation (4.23) gives
g = (C)-1 (P)T (D389) ynod 4 (€)1 (P)TKMd V. (4.26)

Therefore, by substituting equation (4.16), equation (4.26) reduces

to
(DSR") yseh 4 KsPh V = gPh (4.27)

where (D50") = (€)1 (P)T (PZE) (P) and Ksph = (C)-1 (P)T Koo,

it follows from equations (4.16) and (4.25) that

Knod T (P) USPh + Cea V=Q. (4.28)
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Hence the reduced dynamical matrix equation in terms of

Legendre polynomials coefficient degrees of freedom is

LB o e o (o)

The computer code, which computes the transformation from the
reduced nodal dynamical matrix to the spherical harmonic matrix, is
listed in Appendix C [Ref. 3:p. 38].

24




V. CONCLUSIONS AND RECOMMENDATIONS

This thesis represents the first step in an investigation which,
when successfully completed, will significantly improve the Navy's
ability to predict the performance of dense sonar arrays. A network
(matrix) representation of a spherical shell transducer has been
calculated in terms of spherical harmonics. The procedure for
reducing and transforming a nodal description of a transducer into a
spherical harmonic description has been documented.

For this thesis, a two-dimensional model of a spherical shell
transducer was created and a procedure was developed to reduced
and transform its nodal description into a spherical harmonic one, it
is recommended that a three-dimensional model be created and a
similar transformation procedure be developed. Since it is desirable
that ® remain a free parameter when describing a transducer, it is
suggested that the procedure detailed in Chapter IV be rederived
following Benthien's method to obtain the dynamical matrix as a
function of ® [Ref. 5]. It is also recommended that experimental data
be obtained to verify the matrix representation developed in this

thesis.
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APPENDIX A:
EXCERPTS FROM PROPOSAL FOR LFA ARRAY MODELING

APPLICATION OF THE T-MATRIX METHOD TO LOW-FREQUENCY
ACTIVE ARRAY PERFORMANCE PREDICTION

TECHNICAL PROPOSAL

A. Introduction and Related Work

The direction of active sonar surveillance systems is toward lower frequencies, requiring
arrays of large, high power transducers. The successful design and operation of such arrays
requires the ability to reliably predict their performance.

Array performance prediction is a coupled structure-fluid problem [1]. For the analysis of
complex structures, such as a sonar transducer, the finite-element method (FEM) is preeminent
[2]. Many FEM computer codes exist, some of which include piezoelectric elements for the
analysis of piezoelectric transducers, e.g. MARTSAM, ATILA. For application to coupled
structure-fluid problems, the major drawback of the finite-element method is the difficulty of
modeling the infinite fluid. So-called boundary elements, derived from a Helmholtz Integral
formulation of the exterior radiation problem, have been introduced into the FEM to terminate
the fluid mesh [3,4,5]. These elements typically impose an outgoing radiation impedance
condition on the adjacent fluid element. The frequency dependence of the radiation impedance
is commonly approximated by an interpolation between the low- and high-frequency
asymptotic limits [5]. The application of a combined FEM-boundary integral method to array
performance prediction has not appeared in the literature. A full Helmholtz Integral formulation
can be applied at the bounding surface [2,3], but this technique is limited to small problems by
the number of degrees of freedom, and so is not practical to model an entire array. Hence there
is a need for economical methods for array performance prediction. This proposal addresses
that need.

The method we propose is formulated in terms of coupled networks, one for each radiating
element and one for the acoustic field. It is equivalent to the T-matrix method which has been
applied to scattering problems [7,8,9,10], in that ultimately a matrix can be derived which
relates the outgoing acoustic wave to the input electrical excitation of each transducer (the
equivalent reciprocal problem is to relate the.electrical output of each transducer to an incident
wave). One could in fact consider the proposed research the application of the T-matrix
method to sonar array performance prediction. As in the T-matrix method, we adopt the idea
of representing the acoustic field as an eigenfunction expansion and solving for the coefficients
self-consistently. No restriction is placed on the arrangement of the radiators, and so multiple-
scattering of all orders is rigorously included. In addition, we plan to explicitly take into
account the dynamical properties of the radiators. These are to be found for a rea’ transducer
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using a finite-element computer code [2,13].

B. Proposed Effort
Goal

The goal of the proposed research is to produce the most economical yet complete
description possible of sonar array performance, with specific application to low frequency
active arrays. The idea is to combine an analytical representation of a single element (derived
from a finite-element model for a real transducer) with an analytical representation of the
acoustic field to predict the performance of an array of interacting transducers. Especially for
the usual case of an array of identical elements, since the dynamic behavior of only a single
element need be computed, and since this computation need be done only once, regardless of
array geometry, a variety of operating frequencies and array geometries may be analyzed most
economically.

Method

A schematic diagram of a portion of an array of sonar transducers is shown below.

ransducen
(Transduceyp

"Structure”-"fluid" boundary

Jdransducep) }

x| Structure’

"Fluid"

Figure 1. Schematic of a portion of an array of sonar transducers.

The transducers need not be identical, nor in any particular arrangement. There may or may
not be an acoustic wave incident from a source extemal to the array. The closed surface labeled
S indicates the boundary between "structure” and "fluid”. S may coincide with the physical
ooundary of a transducer, or it may include some surrounding fluid.
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There are several reasons to choose S to lie within the fluid surrounding a transducer. The
most important is that, if the "structure”-"fluid" boundary coincides with a constant-coordinate
surface of a coordinate system in which the wave equation is separable, then the eigenfunctions
of the wave equation in that coordinate system are a particularly convenient choice as the basis
for expanding both the surface normal velocity on S and the acoustic field within the "fluid".
This makes it much easier, for example, to compute the self- and mutual radiation impedances.
Also, by including some surrounding fluid as part of the “structure”, the burden of carrying
many higher-order (higher spatial frequency) terms in an eigenfunction expansion of the
acoustic field, which might be required to describe the local flow field near a real transducer,
would be relieved. These degrees of freedom would be considered as intemal to the structure,
with the result that far fewer degrees of freedom would be required to describe the acoustic
field. This is important because only the description of the acoustic field within the "fluid”
needs to be recalculated for a change in array geometry.

Conversely, by including some surrounding fluid, the description of the acoustic field
would be unchanged by a change in the physical structure, for example, by exchanging one
type of transducer for another (e.g. flextensional for hydroacoustic). The "structure” could
even be composed of more than one physical transducer. This would be useful, for example,
to analyze the performance of an array composed of groups of closely-spaced transducers.

Including some surrounding fluid as part of the "structure” raises the possibility of
introducing spurious structural resonances, which may cause problems for a numerical
computation [10]. The consequences of this will have to be investigated.

It is convenient to discuss the array performance problem further in terms of a coupled
network representation. The diagram below depicts the coupling between "structure” and
"“fluid" for one surface normal velocity degree-of-freedom. For simplicity, the transducer is
considered to be reciprocal.
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Surface normal velocity
degree-of-freedom n
Transducer i Acoustic field

Uin

zZ

m,inn

Figure 2. Coupled reciprocal network representation of structure-fluid
interaction for one surface normal velocity degree-of-freedom.

The network equations representing transducer i and the acoustic field are

€= Zg ji - Z Tigu;y, (transducer 1)
k
fo=  Ti - E-Zm,ink“ik’
fin= DiArr+ X Z;jnim¥im- (acoustic field)
j,m

The subscripts i and j refer to particular transducers, and the subscripts k, n and m refer to
particular surface normal velocity degrees-of-freedom (DOF) on a "structure”-"fluid"
boundary, assumed to be a constant-coordinate surface of a coordinate system in which the
wave equation is separable. The meaning of the remaining symbols is

e; = the voltage across the electrical terminals of transducer i,
i; = the current through the electrical terminals of transducer i,
fin = the modal force amplitude of transducer i, DOF n,
uj, = the modal surface normal velocity amplitude of transducer i, DOF n,
Zg j = the blocked electrical impedance of transducer i,
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Z,inn = the open-circuit self mechanical impedance of transducer i, DOF n,
Z. inm = the open-circuit mutual mechanical impedance between transducer i, DOF n, and
DOFm
T;, = the transduction coefficient of transducer i, DOF n,
Z_ inin = the self radiation impedance of transducer i, DOF n,
Z; injm = the mutual radiation impedance between transducer i, DOF n, and transducer j,
DOF m,
pr= the incident free-field pressure, if any (usually assumed to be a plane wave),
A; = the surface area of the "structure”-"fluid" boundary of transducer i,
D;, = the diffraction constant of transducer i, DOF n (the diffraction constant equals the
ratio of the blocked modal force amplitude per unit area to the incident free-field
pressure).

The acoustic field is to be represented as the superposition of the acoustic field due to each
radiator and an optional incident field. The surface normal velocity and the acoustic field of
each radiating element are to be represented as expansions in the free-space eigenfunctions of
the wave equation. *2 .ddition theorem [8,11,12] is to be used to express the field due to one
radiator at the surface of another. The Z, injm and Dy, are to be found in terms of the
eigenfunction expansions by applying the boundary condition at the surface of each radiator
that ¥, =8,j0mn and u;,,=0, respectively. No restriction is placed on the arrangement of
the radiators, and so multiple-scattering of all orders is rigorously included. A self-consistent
solution for the coefficients of the eigenfunction expansions for each radiator is to be found by
applying an impedance-matching boundary condition at the surface of each radiator. The
mechanical impedance of each radiator is to be represented in terms of the modal parameters of
its in-vacuo eigenfunctions. These are to be found for a real transducer using a finite-element
computer code [2,13].
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APPENDIX B:

PROGRAM REDDYNMTRX: computes the reduced nodal dynamical matrix
for LT McLean's radially polarized piezoelectric spherical shell

real
real
real
real
real
real
real
real
real
real

omega,omega2,pi,freqg,rr,pint(361,361)
dyn(361,361),kuu(360,360),mas(360,360)
r(361,361),9(361,361)
a(299,299),b(299,62),c(62,299),d(62,62)
nmn(62,62),sum
p(62,299),pp(62,62),prod(361,361)
s{(361,361),mat(361,361),y(299,299),indx(299)
t(361,361),tt(361,361)

phtoh(8,8)

ccos({59),s8in(59),c2(59)

OLD DATA FILES
open(unit=5,file='transform.sph’,status='o0ld’)
open(unit=8,file="'kuu.sph’,status="0ld’)
open(unit=9,file='mas.sph’,status="0ld’)
open{(unit=10,file="kue.sph’,status='0ld’)
open(unit=11,file="kuel.sph’,status='o0ld’)

NEW FILE FOR STORING THE REDUCED DYNAMICAL MATRIX

open(unit=4,file='reddynmtrx.dat’,status='new’,form="unformatted’)

pi=acos(-1.0)

ASSEMBLE THE FULL DYNAMICAL MATRIX

Read in Ruu(360,360)
do i=1,360
do j=1,360,5

read(8,*)(kuvu(i,k), k=j,j+4)

end do
end do

Read in Muu(360,360)
do i=1,360
do j=1,360,5

read(9,*)(mas(i,k), k=j,j+4)

end do
end do

Read Kue(360,1) into the 361th column of dyn{(361,361)

do i=

1,360

read(10,*)dyn(i,b361)
end do

Read Kue transpose (1,360) into the 361th row of dyn(361,361)
do j=1,360

read{(11,*)dyn(361,3)
end do

dyn{361,361)=capacitance for zero displacement everywhere
dyn(361,361)=1.8515495€E-08

ASSEMBLE K-w*#*2M MATRIX
write(*,*)'Enter frequency in Hz:’
read(*,*)freg

omega={2.0*pi*freq)
omega2=omegat*2
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do i=1,360
do j=1,360
dyn(i,j)=kuu(i,j)-omega2*mas(i,j)
end do
end do

TEST SYMMETRY OF ASSEMBLED FULL DYNAMICAL MATRIX
nerr=0
do i=1,361
do j=i,361
if (dyn(j,i).ne.dyn(i,j)) then
write (*,*)'Symmetry error in full dyn. matrix at (i,§)=',1i,j
nerr=nerc+}l
end if
end do
end do
write (*,*) 'Number of symmetry errors in full dynamical matrix =’,nerr
if (nerr.gt.0) then
STOP
end if

REARRANGE ROWS SO ZERO (INTERNAL) FORCES COME FIRST
do j=1,361
r(1l,j)=dyn(1,]
£(2,j)=dyn(2,j
i)
r(3,3j)~dyn(4, ]
r(5,3)=dyn(6,3
£t(6,j)=dyn(7,j
r(242,j)=dyn(8,j
r{243,3j)=dyn(9,j
r{7,j)=dyn{(10,3)
r(8,j)=dyn(11,3j)
r{9,j)=dyn(12,3)
c{10,j)=dyn{13,j)
r(244,j)=dyn(14,5)
£(245,3)=dyn(15,3)
r{11,3)=dyn{16,.3)
r(12,3)=dyn{17,3)
£(13,j)=dyn(18,3)
r(14,j)=dyn(19,3j)
r(246,j)=dyn{20,j)
r(247,3)=dyn(21,7)
r(15,3)=dyn(22,3)
£(16,j)=dyn(23,3)
r(17,j)=dyn(24,3j)
r(18,3)=dyn(25,7j)
£(248,j)=dyn(26,3)
r(249,j)=dyn(27,3)
r(19,j)=dyn(28,3j)
r{20,j)=dyn(29,]j)
r(21,j)=dyn(30,j)
t{22,))=dyn(31,75)
r{250,j)=dyn(32,j)
£(251,3)=dyn(33,3)
r(23,j)=dyn(34,3)
r{24,3)=dyn(35,3)
t(25,3j)=dyn(36,3)
t(26,3)=dyn(37,3j)

)
)
)
)
)
)

)
)
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r(252,j)=dyn(38,3j)
r(253,j)=dyn(39,3)
r(27,3)=dyn(40, j)
£(28,3)=dyn(41,3j)
r(29,j)=dyn(42,3)
£(30,3)=dyn(43,7)
r(254,j)=dyn(44,3)
t(255,3)=dyn(45,3)
r(31,3)=dyn(46,j)
r(32,j)=dyn(47,3})
r(33,3)=dyn(48,j)
t{34,j)=dyn(49,3)
I(255.j)-dyn(50'j)
£(257,3)=dyn(51,3)
£(35,j)=dyn(52,3)
r{36,3)=dyn{53,j)
£(37,3)=dyn(54,3)
£(38,j)=dyn(55,3)
!(258c3)-dyn(56.j)
£(259,3)=dyn(57,3)
r(39,3j)=dyn(58,j)
r{40,j)=dyn(59,7j)
r(41,j)=dyn(60,3)
r(42,j)=dyn(61,3)
t(260, §)=dyn(62,3)
r{261,3)=dyn(63,3)
r(43,3)=dyn(64,3j)
r(44,3j)=dyn(65,3)
r(45,3)=dyn(66,3)
£(46,3)=dyn(67,3)
r(262,j)=dyn(68,3j)
r(263,3)=dyn(69,3)
r(47,3)=dyn(70,5)
c(48,3j)=dyn(71,3j)
r(49,j)=dyn(72,3)
r(50,3j)=dyn(73,3)
r{264,j)=dyn(74,3)
r(265,3j)=dyn(75,3)
r{51,3)=dyn(76,j)
t(52,3)=dyn(77,3)
£(53,3)=dyn(78,3j)
r(54,3)=dyn(79,3)
r(266,3j)=dyn(80,3)
r{267,3)=dyn(81,3)
£(55,j)=dyn(82,3)
r(56,3)=dyn(83,73)
r(57,3)=dyn(84,3)
r(58,3j)=dyn(85,5)
r(268,3)=dyn(86,})
r(269,j)=dyn(87,j)
r(59,3j)=dyn(88,5)
r{60,3j)~dyn(89,7)
t(61,3)=dyn(90,7)
r(62.j)=dyn(91,3)
£(270,§)=dyn(92,5)
r(271,3)=dyn(93,3)
£(63,j)=dyn(94,3)
r(64,3)=dyn(95,3)
t(65,3)=dyn{96,3)
r(66'j)'dyn(97.j)
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r(272,3j)=dyn(98,j
r(273,J)=dyn(99, }
£(67,3)=dyn(100,j
r(68,§)=dyn(101,]
r{69,3j)=dyn(102,j
r(70,3)=dyn(103,j
r(274,3j)=dyn{104,3)
£(275,j)=dyn(105,3)
r(71,j)=dyn(106, j
r(72,3)=dyn(107,3j
t(73,j)=dyn(108,j
r{74,3j)=dyn(109,35
r(276,3j)=dyn(110, })
£(277,3j)=dyn(111,3)
r{75,j)=dyn(112,j
r{76,3j)=dyn(113,3
£{77,3)=dyn(114,j
r(78,3)=dyn(115,35
r(278,j)=dyn(116,
£(279,3)=dyn(117,3
r(79,j)=dyn(118,3j)
r(80,j)=dyn(119,3j)
r(81,j)=dyn(120,3)
r(82,j)=dyn(121,j)
r(280,j)=dyn{122,3j)
r{281,3)=dyn(123,j)
r(83,j)=dyn(124,j)
r(84,j)=dyn(125,7)
r(85,j)=dyn(126,3j)
r(86,j)=dyn(127,3)
r(282,j)=dyn(128,3j)
r(283,j)=dyn(129,7j)
£(87,3j)=dyn(130,j)
r(88,j)=dyn(131,3)
t(89!j)'dyn(1320j)
r{90,3j)=dyn(133,3)
r(284,j)=dyn(134,3j)
r(285,j)=dyn(135,7)
r(91,j)=dyn(136,3)
r(92,j)=dyn(137,3)
r(93,j)=dyn(138,j)
r(94,j)=dyn{139,35)
r(286,3)=dyn(140,j)
r(287,j)=dyn(141, 3}
r(95,3)=dyn(142,3)
£(96,j)=dyn(143,73)
r{97,j)=dyn(144,3)
r(98,j)=dyn(145,j)
r(288,j)=dyn(146,j)
r(289,j)=dyn(147,3)
r(99,j)=dyn(148,j)
r(100,j)=dyn{149,j)
r{101,j)=dyn(150,3)
r(102,3)=dyn(151,3)
r{290,3)=dyn(152,3)
r(291,3j)=dyn(153,35)
r(103,j)=dyn(154,5)
r(104,j)=dyn(155, j)
£(105,3)=dyn({156,3)
r{106,3j)=dyn(157,3)

e " S s b s i g Sew ko e S st S S e

)
)

35




r(292,3)=dyn(158, j
r(293,j)=dyn(159, ]
r{107,3j)=dyn{160, j
r(108,j)=dyn(161, ]
r(109,j)=dyn(162, ]
(110, 3 )=dyn{163, ]
r(294,j)=dyn(164, ]
r(295,3j)=dyn(165, ]
r{111,J)=dyn(166, ]
r(112,j)=dyn(167, ]
r{113,j)=dyn(168, ]
r(114,3)=dyn(169, ]
r{(296,§)=dyn(170, ]
£(297,3)=dyn(171, ]
r(115,§)=dyn(172, ]
r{(116,j)=dyn(173, ]
r(117,3j)=dyn(174, ]
r(118,j)=dyn(175, ]
(298, j)=dyn(176, ]
r{299,j)=dyn(177, ]
r(119,j)=dyn(178, ]
r(120,j)=dyn(179, ]
r(121,j)=dyn(180, j
r(122,j)=dyn(181, ]
r(300,3)=dyn(182, ]
r(301,j)=dyn(183, ]
r{123,j)=dyn(184, ]
r{124,j)=dyn(185, ]
r(125,§)=dyn(186, j
r{126,3j)=dyn(187, ]
r{302,3j)=dyn(188, ]
r(303,j)=dyn(189, ]
r(127,3)=dyn(190, ]
r(128,3j)=dyn(191, ]
r(129,j)=dyn(192, ]
r{130,3)=dyn(193, ]
r(304,j)=dyn(194, ]
r(30S5,j)=dyn(195, j
r(131,3)=dyn(196, j
r{132,3j)=dyn(197, ]
r(133,j)=dyn(198, j
r{134, j)=dyn(199, ]
r{306,3j)=dyn(200, ]
(307, j)=dyn(201, ]
r(135,j)=dyn(202, ]
r(136,3)=dyn(203, ]
r(137,3j)=dyn(204, j
r(138,3)=dyn(205, ]
£ (308,5)=dyn(206, ]
r(309,3§)=dyn(207, ]
r(139,§)=dyn(208, ]
r(140,§)=dyn(209, ]
r(141,j)=dyn(210, ]
r(142, j)=dyn(211, ]
r(310,j)=dyn(212, ]
r{311,§)=dyn(213,
r(143,j)=dyn(214,
r(144,j)=dyn(215, ]
r{145,§)=dyn(216, ]

adet,

r(146,j)=dyn{(217,]
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r(312,
r{313,]
r(147,
r(14e,
r(149, ]
r (150, ]
(314,
r(315, ]
{151, ]
(152,
{153,
r(154, ]
r{316, ]
r{317,]
r{155,
r{156, ]
£(157, ]
r{158, 1
r(318, ]
r{319, ]
{159,
r{160, ]
r(161, ]
{162,
(320,
r(321, ]
r(163, ;
r{(164, ]
r{165, ]
r(166, ]
r(322,]
r(323,
t(167, ]
r(168, j
(169, ]
r(170, ]
r(324, ]
r(325, ]
r(171, ]
(172, ]
(173,
r{l74,
(326,
({327,
r{175, ]
(176, ]
(177,
r{178,
(328,
r{329,]
(179,
(180, ]
r(181, ]
r(182,
r(330,
r{331,
r(183, ]
r(184, ]
r{185,]

Joidoh
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r(186, 3

)=dyn(218,3§)
)-dyn(219'j)
)=dyn(220,3j)
)=dyn(221, })
)=dyn(222, )
)=dyn(223,3j)
)=dyn(224,73)
Y=dyn(225,3)
)=dyn(226,3j)
)=dyn(227,3)
)=dyn(228, j)
)=dyn(229,3)
)=dyn(230,3)
)=dyn(231,3)
)=dyn(232,5)
)=dyn(233,j)
)=dyn(234,3j)
)=dyn(235, j)
)=dyn(236,3)
)=dyn(237, j)
)=dyn(238,3)
y=dyn(239,j)
)=dyn{240,3j)
)=dyn(241,3)
)=dyn(242,3)
)=dyn(243,3j)
)=dyn(244,3)
y=dyn(245,3)
)=dyn{246,3j)
y=dyn(247,3)
)=dyn(248,3j)
)=dyn{249,7j)
Y=dyn(250,j)
}=dyn(251,7)
}=dyn(252,3)
)=dyn{253,3j)
)=dyn(254,3j)
)-dyn(255. j)
)=dyn(256,3)
)=dyn(257,3j)
)=dyn({258,3j)
)=dyn(259,3j)
)=dyn(260,3j)
Y=dyn(261,3)
)=dyn(262,3j)
)=dyn(263,3)
)=dyn(264,3)
)=dyn{265,j)
)=dyn(266, j)
}=dyn(267,3)
)=dyn(268,j)
}=dyn(269,3)
)=dyn(270,3)
)=dyn(271,3})
}=dyn(272,3)
)=dyn(273,3)
Y=dyn(274,3)
)=dyn(275,3)
)=dyn(276,3})
y=dyn(277,3)
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r{332,j)=dyn{278,3)
r{333,j)=dyn(279,j)
r(187,})=dyn(280,j)
(188, })=dyn(281,3j)
r(189,j)=dyn(282,3)
(190, j)=dyn(283,j)
r(334,j)=dyn(284,3)
{335, j)=dyn(285, j)
r(191,j)=dyn(286,3)
r(192,j)=dyn(287,3)
r(193,j)=dyn(288,j)
£(194,j)~dyn(289,3)
r(336,3j)=dyn(290, §)
r{337,3j)=dyn(291,3)
r(195,3)=dyn(292,3)
r(196,3)=dyn(293,j)
£(197,3)=dyn(294,3)
r(198,3)=dyn(295,3j)
r(338,j)=dyn(296,3)
r(339,3j)=dyn(297,3)
r(199,3j)=dyn(298,3)
(200, 3j)=dyn{299,j)
r{201,§)=dyn(300,3)
(202, j)=dyn(301,3j)
r(340,j)=dyn(302,3)
r(341,j)=dyn(303,3})
£{203,j)=dyn(304,3)
r{204,3j)=dyn(305,3j)
£(205,j)=dyn(306,3)
r(206, 3)=dyn(307,3j)
r(342,j)=dyn(308,j)
r(343,§)=dyn(309, j)
(207, j)=dyn(310,j)
r(208, j)=dyn(311,3j)
r(209,j)=dyn(312,j)
t(210,3j)=dyn(313,7j)
r(344,j)=dyn(314,3)
r(345,§)=dyn(315,3)
r(211,3)=dyn(316,3)
£(212,)=dyn(317,7)
r{213,j)=dyn(318,3)
r(214,3j)=dyn(319,5)
r(346,j)=dyn(320,4)
r{347,3j)=dyn(321,j)
£(215,3)=dyn(322,3)
r(216,3)=dyn(323,3)
r(217,3)=dyn(324,5)
r(218,3)=dyn(325,3)
r(348,3j)=dyn(326,3)
r{349,§)=dyn{327,3)
r(219,j)=dyn(328,3)
r(220,3j)=dyn(329,7)
r(221,§)=dyn(330,5)
r(222,§)=dyn(331,j)
t(350,3)=dyn(332,4)
(351, §)=dyn(333,5)
r{223,3)=dyn(334,5)
r{224,j)=dyn(335,3)
t(225,§)=dyn(336,5)
r{226,3)=dyn(337,3)
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r{352,j)=dyn(338, ]
(353, 3)=dyn(339, ]
£(227,3)=dyn(340, ]
r(228,3)=dyn(341,]
r{229,3)=dyn(342,]
r{230,3)=dyn( 343, ]
r (354, J)=dyn( 344, ]
r{355,3)=dyn(345, ]
r(231,3)=dyn(346, ]
r{232,j)=dyn(347,]
r(233,§)=dyn( 348, ]
r(234,j)=dyn(349, ]
r(356,3)=dyn(350, ]
t(357,3)=dyn(351, ]
r(235,j)=dyn(352, ]
r(236,j)=dyn(353, j
r(237,j)=dyn(354, ]
r(238,3)=dyn(355, ]
r{358,3j)=dyn(356, ]
t{359,3j)=dyn(357, ]
r(239,j)=dyn(358, j
r(240, j)=dyn(359, j
r(360,3)=dyn(360, j

r(361,3j)=dyn(361, ]
end do

REARRANGE COLUMNS
do i=1,361
9(i'1)‘r(ill)
g(i,2)=r(i,2)
g(i,241)=r(i,3)
q(i.3)'!(1'4)
g{i,4)=r(i,5)
g(i,5)=r(i,6)
g(i,6)=r(i,7)
g{i,242)=r(1,8)
g(i,243)=r(i,9)
g(i,7)=r(i, 10)
g(i,8)=c(i,11)
g(i,9)-r(i,12)
9(i,10)=r(i,13)
g(i,244)=r(i, 14)
g9(1,245)=r(i,15)
g(i,11)=c(i,16)
g(i,12)=c(i,17)
g{i,13)=r(i,18)
g{i,14)=r(i,19)
g(i,246)=c(i,20)
g({i,247)=r(i,21)
g(i,15)=r(i,22)
g(i,16)=r(i,23)
g(i,17)=x(i,24)
g(i,18)=r(i,25)
g(1,248)=r(i,26)
g(1,249)=r(1,27)
g(i,19)=r(1,28)
g(i,20)=r(i,29)
g(i,21)=c(1,30)
g{i,22)=r(i,31)
g(1,250)=r(i,32)
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g{i,251)=r(i,33)
g(i,23)=r(1,34)
9(‘--24)"t(i'35)
g{i,25)=r(i,36)
9(i,26)=r(i,37)
g(i1,252)=r(1,38)
9(1,253)-I(1o39)
g(i,27)=r(1,40)
g(i,28)=r(i,41)
g(i,29)=r(i,42)
g(i,30)=r(1,43)
g(i,254)=r(i,44)
g(1,255)=r(i,45)
g(i,31)=r(1,46)
g(i,32)=r(1,47)
g(i,33)=r(i,48)
g{i,34)=r(i,49)
g(1,256)=r(1,50)
g(i,257)=~r(1,51)
g(i,35)=r(1,52)
g(i,36)=r(i,53)
g(i,37)=r(i,54)
g(i,38)=r(i,595)
g(i,25@)=r(i,56)
9(i,259)=r(i,57)
g(i,39)=r{i,58)
g(i,40)=r(i,59)
g(i,41)=c(4,60)
g(i,42)=r(i,61)
g(1,260)=r(i,62)
g(iyzsl)-l’(ip63)
g(i,43)=c(i,64)
g9(i,44)=r(i,65)
g(i,45)=r(1i,66)
g{i,46)=r(1,67)
g(i,262)=r(i,68)
g(i1,263)=r(1,69)
9{i,47)=c(1,70)
g(i,48)=r(i,71)
g{i,49)=r(i,72)
9(1150)-1'(’173’
g(i1,264)=r(i,74)
g9(i,26S)=r{i,75)
g{i,51)=r(i,76)
9“,52)-t“o77)
9(i1,53)=r(1,78)
g(i,54)=c(i,79)
g(1,266)=r(i,80)
g(1,267)=r(1,81)
g(i,55)=r(1,82)
g(i,56)=r(1,83)
g(i,57)=r(1i,84)
g({i,58)=c(1,85)
g(1,268)=r{i,86)
g(1,269)=r(1i,87)
g(1,59)=c{i,88)
g(1,60)=r(1,89)
g(i,61)=r(1,90)
9(1o62)'!“.9l)
g(i,270)=c(i,92)
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g(i,271)=r(1,93)
g({1,63)=r(4,94)
g(i,64)=r(i,95)
g(1,65)=r(i,96)
g(i,66)=r(1,97)
g(1,272)=r(1,98)
g(i,273)=r(1,99)
g{i,67)=c(i,100)
g(i,68)=c(1,101)
g({1,69)=c(1,102)
g(1,70)=r(1,103)
g{i,274)=r(i,104)
g{1,275)=r(i,105)
g(i,71)=r(1,106)
g(i,72)=r(i,107)
g(i1,73)=r(i,108)
g{i,74)=r(i,109)
gl{i,276)=r(i,110)
g(i,277)=c(i,111)
g(i,75)=x(i,112)
g(i,76)=r(1,113)
g(i,77)=r(4,114)
g{i,78)=r(i,115)
g(i,278)=r(i,116)
g{1,279)=r(i,117)
g(i,79)=c(1,118)
g(1,080)=r(i,119)
g(1,81)=r(1,120)
g{i,B82)=r(i,121)
g(i,280)=r(i,122)
q(i,281)=r(i,123)
g{i1,83)=r(i,124)
g(i,B84)=r(i,125)
g{i,85)=r(i,126)
g(i,86)=r(i,127)
g({i1,282)=r(i,128)
g(i,283)=r(1,129)
g(i,87)=r(i,130)
g(i,88)=r(i,131)
g(i,89)=r(1,132)
gl{1,90)=r(i,133)
gl{i,284)=r(1,134)
g(i,285)=r(i,135)
g(i,91)=r(i,136)
g{i,92)=rti,137)
g(i,93)=r(i,138)
g(i1,94)=r(i,139)
g(i,286)=r(i,140)
g(i,287)=r(i,141)
g{i,95)=r(1,142)
9(1,96)=r(1,143)
g{i,97)=r(i,144)
g{i,98)=c(1,145)
9(1,288)=r(1,146)
g(1,289)=r(i,147)
gl(i,99)=r(4,148)
9(i,100)=r(1,149)
g{i,101)=c(i,150)
g(i,102)=r(i,151)
g(1,290)=r(1,152)

—
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9(i,291)=r(1,153)
g9(i1,103)=r(1i,154)
g(i,104)=r(i,155)
9(1'105)-t(i.156)
9(i,106)=c(1,157)
g(i,292)=r(i,158)
g(1,293)=c(1,159)
9(1,107)=r(i,160)
g(§,108)=r(i,161)
9(1,109)-[(1,162)
g(i,110)=r(1,163)
g(i,294)=r(i,164)
g(i1,295)=r(1,165)
9(i,111)=c(i,166)
9(1,112)=c(1,167)
g(i,113)=r(i,168)
g(i,114)=r(1,169)
9(1,296)=r(i,170)
g9(i1,297)=r(i,171)
g(i,115)=r(1,172)
g(1,116)=r(i,173)
g(i,117)=r(i,174)
g(i,118)=r(i, 175)
g(1,298)=r(1,176)
g(i,299)=c(i,177)
g{i,119)=r(i,178)
9(11120)-[(13179)
g(i,121)=r(i,180)
g(i,122)=r(i,181)
g(i,300)=r(1,182)
g(i,301)=r(i,183)
g(i,123)=r(i,184)
g{i,124)=r(i,185)
g(i,125)=r(i,186)
g(i,126)=r(1,187)
9(i,302)=r(i,188)
g(i,303)=r(1,189)
g(i,127)=r(i,190)
9(i,128)=r{1,191)
g(i,129)=r(i,192)
g(i,130)=r(i,193)
g(i,304)=r(i,194)
g(i,305)=r(i,195)
g(i,131)=r(1,196)
g(i,132)=r(i,197)
g(i,133)=r(1,198)
g(i,134)=r(i,199)
g(i,306)=r(1,200)
g{i1,307)=r(i,201)
g(i,135)=r(i,202)
g(1,136)=r(4,203)
9{i,137)=r(i,204)
g(i,138)=r(1i,205)
g(i,308)=r(1,206)
g(i,309)=r(i,207)
g(i,139)=r(4,208)
g(i,140)=r(1,209)
gti,141)=r(i,210)
ag(i,142)=r(i,211)
g(i,310)=r(1,212)
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g(i,311)=r(i,213)
g(i,143)=r(4,214)
g(i,144)=r(1i,215)
g{i,145)=r(i,b216)
g(i,146)=r(i,217)
gli,312)=r(i,218)
g(i,313)=r(i,219)
g(i,147)=r(i,220)
g(1,148)=r(i,221)
g(i,149)=r(i,222)
91i1,150)=r(i,223)
g(i,314)=r(1,224)
g(i,315)=r(4,225)
g(i,151)=r(1,226)
9(i,152)=c(i,227)
g(i,153)=r(i,228)
g(i1,154)=r(1i,229)
g{i,316)=r(i,b230)
g(1,317)=r(i,231)
9(i,155)=r(i,232)
g(i,156)=r(i,233)
gli,157)=r(i,234)
g(i,158)=r(i,235)
g(i,318)=r(1i,236)
g({i,319)=r(i,237)
g(i,159)=r(i,238)
g(4,160)=c(i,239)
g(i,161)=r(i,240)
g(i,162)=r(1i,241)
g(i,320)=r(i,242)
g(i,321)=r(i,243)
g{i,163)=r(i,244)
g(i,164)=r(i,245)
g(i,165)=r(i,246)
g(i,166)=r(i,247)
g(i,322)=r(i,248)
g(i,323)=r(i,249)
gli,167)=r(1,250)
g(i,168)=r(i,251)
a(i,169)=r(i,252)
g9(1,170)=r(i,253)
g(i,324)=r(i,254)
g(i,325)=c(i,255)
g(i,171)=r(i,256)
g{i,172)=c(i,257)
g(1,173)=c(i,258)
g(i,174)=r(i,259)
g(i,326)=r(1,260)
g(i,327)=c(1,261)
g(i,175)=r(i,262)
g(i,176)=r(i,263)
g(i,177)=c(1,264)
g(i,178)=r(i,265)
g(i1,328)=r(i,266)
g9(i,329)=r(i,267)
g(i,179)=r(1i,268)
g(i,180)=r(1,269)
g(i,181)=r(i,270)
q(1,182)=r(i,271)
g(1,330)=r(1,272)
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9(1,331)=r(1,273)
g(1,183)=r(i,274)
g(i,184)=c(i,275)
g(i,185)=r(1,276)
9(i,186)=r(i,277)
g({i,332)=r(1,278)
g(i,333)=c(1,279)
g(i,187)=r(i,280)
g(i,188)=r(i,281)
g(i,189)=r(1,282)
g(i,190)=c(1,283)
g(i,334)=r(i,284)
g(i,335)=c(1,285)
g{i,191)=r(1,286)
g(1,192)=c(1,287)
g(i,193)=r(i, 288)
g(i,194)=r(i,289)
g(1,336)=r(i,290)
g(i,337)=r(i,291)
g(1,195)=r(i,292)
g(1,196)=r(1,293)
g(i,197)=r(i,294)
9(1,198)=r(i,295)
g(i,338)=r(1,296)
g9(1,339)=r(i,297)
g9(1,199)=r(i,298)
g(1,200)=r(i,299)
g{i,201)=r(i,300)
g({i,202)=r(i,301)
q(i,340)=r(1,302)
g(i,341)=r(i,303)
9(i,203)=c(i,304)
g(1,204)=r(i,305)
g(1,205)=c(i,306)
g(i,206)=r(i,307)
g(i,342)=c(i,308)
g(i,343)=r(i,309)
g(i,207)=c(i,310)
9(i,208)=r(i,311)
g(1,209)=r(1,312)
9(i,210)=r(i,313)
g(i,344)=r(1,314)
g(i,345)=r(i,315)
g(i,211)=r(i,316)
9(i,212)=r(1,317)
g(i,213)=r(i,b318)
g{i,214)=r(i,319)
g(i,346)=c(i,320)
g(i,347)=c(1,321)
9(i,215)=r(i,322)
9(i,216)=r{i,323)
g(i,217)=r(1,324)
g(i,218)=x(1,325)
g(i,348)=c(1,326)
q(1,349)=r(i,327)
g(i,219)=r(1,328)
g(i,220)=r(i,329)
g(i,221)=r(i,330)
g(i,222)=r{i,331)
g(i,350)=c(4,332)
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g(i1,351)=r(i,333)
g(i,223)=r(i,334)
9{i1,224)=r(i,335)
g(1,225)=r(i,336)
q{i1,226)=r(i,337)
g(1,352)=r(i,338)
g(i,353)=r(i,339)
g(i,227)=r(1,340)
g(i1,228)=r(1i,341)
g(i,229)=r(1,342)
g(i,230)=r(i,343)
g(i,354)=c(i,344)
g(1,355)=r(i,345)
gl(i,231)=c(i,346)
g(i,232)=r{1,347)
9(1.233)‘((1.348)
g(i,234)=c(1,349)
g{i,356)=r(i,350)
g(i,357)=r(4,351)
g{i,235)=r(1,352)
g(i,236)=r(1,353)
g(i,237)=r(i,354)
g(i,238)=r(1,355)
g9(i,358)=r(1i,356)
g(i,359)=r(1,357)
g(1,239)=r(1,358)
g({1,240)=c(i,359)
g(i,360)=r(1,360)
g(i,361)=r(i,361)
end do

ASSEMBLE TRANSFORMATION MATRIX, t(361,361)

WHICH CONVERTS SURFACE DOFs TO NORMAL AND TANGENTIAL

Upper left corner
do i=1,240
do j=1,240
t(i,3j)=0.0
end do
t(i,i)=1.0
end do

Upper right corner
do i=1,240
do j=241,361
t(i,j)=0.0
end do
end do

Lower left corner
do i=241,361
do j=1,240
t(i,j)=0.0
end do
end do

Lower right corner
do 1=241,361
do j=241,361
t(i,j)=0.0
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end do
end do
t(241,241)=-1.0
t(360,360)=1.0
t(361,361)=1.0

READ IN SURFACE NODE COORDINATES AND COMPUTE SIN THETA AND COS THETA

FOR ALL BUT FIRST AND LAST SURFACE NODES
NOTE THETA IS THE POLAR ANGLE
do i=1,59
read(5,'(2£10.8)') xx,yy
rr=SQrt{xx**24yy*+2)
ssin(i)=xx/rr
ccos(i)=yy/rr
end do

k=241

do i=242,358,2
t(i,i)=ssin(i-k)
t(i,i4l)=-ccosli-k)
t{(i+l,i)=ccos(i-k)
t(i+l,i+1)=ssin(i-k)
k=k+1

end do

ASSEMBLE tt(361,361) = TRANSPOSE OF t{361,361)
do i=1,361
do j=1,361
tt(j,ir=t(i,j)
end do
end do

MULTIPLY g BY t
do i=1,361
do j=1,361
sum=0.0
do k=1,361
sum=sum+g(i,k)*t(k,j)
end do
pint(i,j)=sum
end do
end do

do i=1,361
do j=1,361
sum=0.0
do k=1,361
sum=sum+tt(i,k)*pint(k,Jj)
end do
prod{(i,j)=sum
end do
end do

TEST SYMMETRY OF TRANSFORMED FULL DYNAMICAL MATRIX
nerr=0
do i=1,361
do j=i, 361
if (prod{(j,i).ne.prod(i,j)) then

write (*,*)'Symm error in transf full dyn mtrx at (i,j)=',1,j

nerr=nerr+l
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end if
end do
end do
write (*,*) 'Number of symmetry errors in transf full dyn mtrx =’,nerr
if (nerr.gt.0) then
STOP
end if

REARRANGE ROWS SO ZERO (TANGENTIAL) SURFACE FORCES COME FIRST
do i=1,240

do j=1,361

s{i,j)=prod{i,j)

end do
end do
do j=1,361
(300, j)=prod(241, ]
s5(301,j)=prod(242, ]
§(241,3)=prod(243,
s(302,j)=prod{244, j
5(242,j)=prod(245, j
s{(303,3j)=prod(246, ]
s(243,j)=prod(247, ]
s(304,3j)=prod(248, ]
s(244,j)=prod(249, ;
s(305,j)=prod(250,
s(245,j)=prod(251, ]
s(306,j)=prod(252, j
§(246,j)=prod(253, ]
s{307,j)=prod(254, ]
s{(247,j)=prod (255, ;
s{308, j)=prod(256, j
s(248,j)=prod(257, ]
s(309,j)=prod(258, ]
5(249,j)=prod(259, j
(310, j)=prod(260, ]
s{250, j)=prod(261,
s{311,j)=prod(262,
s(251,j)=prod(263, j
s{312,j)=prod{264, ]
s(252,j)=prod{ 265, ]
s(313,3j)=prod(266, ]
s{253,j)=prod(267, ]
s{314,3j)=prod(268, ]
s(254,3j)=prod(269, j
s(315,j)=prod(270, ]
s(255,j)=prod(271, ]
5{316,3)=prod{272,]
(256, j)=prod(273, ]
s{317,j)=prod(274,
8(257, j)=prod(275, ]
(318, j)=prod(276, ]

()
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8(258,j)=prod(277, j
s§(319,j)=prod(278, ]
8{259,j)=prod(279, ]
6{320,j)=prod(280, ]

s(260,j)=prod(281, 3)
8{321,j)=prod(282,3j)
s(261,3j)=prodi{283,j)
s(322,j)=prod(284,3j)
s(262,j)=prod(285,3)
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s(323,
8{263,

]

<

s(324,]
8(264, ]
8(325, ]
8(265v:
5(326, ]
8(266':
8(327,
8{267,
{328, ]
s(268.:
8(329, ]
s({269, ]

8(330.

]

s(270,
8(3310:
8(271':
5(3320'

s{272,

5(3331:
s(273,]
s(334,
s(274, ]
8(335::
s{275, ]
{336, ]
s(276, ]

s{337,

ke

s(277,
s{338, ]
s{278, ]
5(33912
s(279, ]
5(340, ]

§(280, 3

s(341,
s(281

(342,
5(262, ]

s(343,
s(283,
s{344,
s(284,
(345,

4

]

E

5(285, ]
s( 346, ]
8(286, ]
8(347,]
s(287,
5(348, ]
5(288, ]
8(349, ]
5(289, ]
8(350, ]

s(290,

PRrRY

s8(351,
8{291, ]
8(352, ]
8(292, ]

)=prod(286, 3
}=prod(287, ]
}=prod(288, ]
})=prod(289, ]
)
}
)

-

=prod(290, ]
=prod(291,]
=prod{292,
)=prod(293, ]
}=prod(294,]
y=prod( 295, ]
)=prod(296, ]
)=prod(297,]
)=prod{298,
y=prod{299, ]
}=prod{ 300,
}=prod(301, ]
)=prod(302, ]
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)=prod{314, ]
)=prod(315, ]
}=prod(316, ]
)=prod(317,]
)=prod(318, ]
}=prod(319, ]
)=prod({320, ]
)=prod(321, ]
)=prod(322, ]
=prod{323,
,=prod(324, ]
)=prod{325, ]
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=prod(327, ]
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)=prod(335, ]
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8(353,j)=prod(346, j

)
8(293,j)=prod(347,3)
5(354,3)=prod(348,j)
8(294,j)=prod(349,3)
8(355, 3 )=prod(350,3j)
8(295,§)=prod(351,3)
s(356,§)=prod(352,j)
8(296,j)=prod(353,3)
8(357,3)=prod(354,3)
5(297,j)=prod(355,3)
s(358,j)=prod(356,3)
§(298,3)=prod(357,3)
5(359,3j)=prod(358,3)
§(299,j)=prod(359,3)
(360, j)=prod(360,j)
s(361,3)=prod(361,j)
end do

REARRANGE COLUMNS SO TANGENTIAL SURFACE DISPLACEMENTS COME FIRST
do i=1,361

do j=1,240

mat(i,jr=s(i,3)

end do
end do
do i=1,361
mat(i,300)=s5(i,b241)
mat(i,301)=s5(i,242)
mat(i,241)=s(i,243)
mat(i,302)=s(i,b244)
mat(i,242)=s(1,245)
mat(i,303)=s(i,246)
mat(i,243)=5(i, 247)
mat(i,304)=s(i,248)
mat(i,244)=5(i,b249)
mat(i,305)=s(i,250)
mat(i,245)=s(i,251)
mat{i,306)=s5(i,252)
mat(i,246)=5(i,253)
mat(i,307)=s(i,254)
mat(i,247)=s(1,255)
mat(i,308)=s(i,256)
mat(i,248)=s5(i,257)
mat(i,309)=s(i,258)
mat(i,249)=s(i,259)
mat(i,310)=s(1i,260)
mat(i,250)=s5(i,261)
mat(i,311)=s(i,262)
mat(i,251)=5(i,263)
mat(i,312)=s(i,264)
mat(i,252)=s8(1,265)
mat(i,313)=5(i,266)
mat(i,253)=s5(i,267)
mat(i,314)=5(i,268)
mat(1,254)=5(1,269)
mat(i,315)=5(1,270)
mat(i,255)=8(i,271)
mat(i,316)=s(i,272)
mat(1,256)=5(i,273)
mat(i,317)=s5(i,274)
mat(i,257)=8(i,275)
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mat(i,318)=s(i,276)
mat(i,258)=5(i,277)
mat(i,319)=5(1,278)
mat(i,b259)=5(1,279)
mat(i,320)=s(i,280)
mat(i,260)-s5(i,281)
mat(i,321)es(i,282)
mat(i,261)~s(i,283)
mat(i,322)=5(1,284)
mat{i,262)=s5(i,285)
mat(i,323)=5(i,286)
mat(i,263)=8(1,287)
mat(i,324)=s(i,288)
mat(i,264)=s(1,289)
mat(i,325)=s(1,290)
mat(i,265)=8(i,291)
mat{i,326)=5(1,292)
mat(1i,266)=s5(i,293)
mat(i,327)=5(i,294)
mat(i,267)=5(i,295)
mat(i,328)=5(1,296)
mat(i,268)=5(1i,297)
mat(i,329)=s5(i,298)
mat(i,269)=s(i,299)
mat(i,330)=s(i,300)
mat(i,270)=s(1,301)
mat(i,331)=s(1,302)
mat(i,271)=s(i,303)
mat({i,332)=s(i, 304)
mat(i,272)=5(i,305)
mat(i,333)=s(i,306)
mat(i,273)=s(1,307)
mat(i, 334)=s(i,308)
mat(i,274)=s(i,309)
mat(i,335)=s(i,310)
mat(i,275)=s{i,311)
mat(1,336)=5(1,312)
mat(i,276)=s(i,313)
mat(i,337)=s5(i,314)
mat(i,277)=s(i,315)
mat(i,338)=s5(i,316)
mat(i1,278)=5(1,317)
mat(1,339)=s(i,318)
mat(i,279)=s(i,319)
mat(i,340)=s(i,320)
mat(i,280)=s5(i,321)
mat{i,341)=s(1,322)
mat(1i,281)=s(1,323)
mat(i,342)=s8(i,324)
mat(i,282)=s(i,325)
mat(i,343)=s(1,326)
mat{i,283)=8(1,327)
mat(i,344)=s(1,328)
mat(i,284)=5(§,329)
mat(i,345)=s(1,330)
mat(i,285)=8(1,331)
mat(i,346)=5(1,332)
mat{i,286)=8(1,333)
mat(i,347)=8(1,334)
mat(i,287)=s5(1,335)
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mat(i,3408)=8(1,336)
mat(i,288)=5(i,337)
mat{i,349)=5(i,338)
mat({i,289)=s5(1,339)
mat(i,350)=s5(1,340)
mat(i,290)=5(1,341)
mat(1,35))=5(i,342)
mat(i,291)=5(1i,343)
mat(i,352)=s8(1,344)
mat{i,292)=s(i,345)
mat{i,353)=5(1i,346)
mat(i,293)=8(1,347)
mat(i,354)=s5(1i,348)
mat{i,294)=s(1,349)
mat{i,355)=s(1,350)
mat(i, 295)=5(1,351)
mat(i,356)=s(1i,352)
mat({i,296)=5(i,353)
mat(i,357)=5(i,354)
mat(i,297)=s(i,355)
mat(i,358)=5(i,356)
mat(i,298)=s5(i,357)
mat(i,359)=s5(1,358)
mat(i,299)=5(1i,359)
mat(i,360)=s(i, 360)
mat(i,361)=5(1,361)
end do

PARTITION mat MATRIX INTO a,b,c AND d MATRICES

do i=1,299
do j=1,299
ali,j)e=mat(i,])
end do
end do

do i=1,299
do j=300,361
b(i,j~299)=mat(i,j)
end do
end do

do 1=300,361
do j=1,299
c(i-299,3)=mat(i,j)
end do
end do

do i=300,361
do j=300,361

d(i-299,3-299)=mat(i,j)

end do
end do

COMPUTE INVERSE OF MATRIX a
n=299
np=299
do i=1,n
do j=1,n
Y(l.j)-O.D
end do
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y(i.l)-l.o
end do
call ludcmp(a,n,np,indx,qd)
do j=1,n
call lubksb(a,n,np,indx,y(1,3))
end do

MULTIPLY c BY y
do i=1,62
do j=1,299
sum=0.0
do k=1,299
sum=sum+c(i,k)*y(k,Jj)
end do
pli,j)=sum
end do
end do

MULTIPLY p BY b
do i=1,62
do j=1,62
sum=0.0
do k=1,299
sum=sum+p(i,k)*b(k,j)
end do
ppli,j)=sum
end do
end do

COMPUTE d-pp
do i=1,62
do j=1,62
nn{i,j)=d(i,j)-ppli,J)
end do
end do

TEST SYMMETRY OF REDUCED DYNAMICAL MATRIX
nerr=0
do i=1,62
do j=i,62
fracerr=Abs(nn{j,i)~nn(i,]j))/Sqrt(Abs(nn{j,i)*nn(i,j)))
if (fracerr.ge.0.001) then
write (*,%)'Symmetry error in reduced dyn. mtrx at (i,j)=',i,j
nerr=nerr+l
end if
end do
end do
write (*,*) 'Number of symmetry errors in reduced dyn. matrix =',nerr
if (nerr.gt.0) then
STOP
end if

TH1S COMPLETES THE REDUCTION TO NODAL SURF VEL DEG OF FREEDOM
STORE REDUCED DYNAMICAL MATRIX IN UNFORMATTED BINARY FORM
do i=1,62
wtite(4)(nn(i.j’.j'1v52)
end do

end
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END OF MAIN PROGRAM

subroutine ludcmp(a,n,np,indx,d)
parameter(nmax=299,tiny=1.0e-32)
dimension a(299,299), indx(299), vv{299)
d=1.0
do i=1,n
aamax=0.0
do j=1,n
if(abs(a(i,j)).gt . aamax) aamax=abs(a(i,j))
end do
if(aamax.eq.0.0) pause ’'singular matrix.’
vv(i)=1.0/aamax
end do

do j=1,n

do i=1,j-1
sum=a(i,j)
do ke1,i-1

sum=sum-a(i.k)*a(k,j)

end do
a(i,j)=sum

end do

aamax=0.0

do i=j,n
sum=a(i,j)
do k=1,j-1
sum=sum-a(i,k)*a(k,j)
end do
a(i,j)=sum
dum=vv(i)*abs(sum)
if(dum.ge.aamax) then
imax=i
aamax=dum
end if
end do

if(j.ne.imax)then
do k=1,n
dum=a(imax,k)
a(imax,k)=a(j,k)
a(j,k)=dum
end do
d=-d
vviimax)=vv(j)
end if
indx(j)=imax
if(a(j,j).eq.0.) a(j,j)=tiny
if(j.ne.n) then

dum=1.0/a(3j,j)
do i=j+1,n
a{i,j)=a(i,j)*dum
end do
end {f

end do

return

end
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subroutine lubksb(a,n,np,indx,hi)
din;nslon a(299,299),indx(299),hi(299)
ii=
do i=1,n

m=indx (1)

sum=hi(m)

hi(m)=hi(i)

if(ii.ne.0) then

do j=1i,i-1

sum=sum-a{i,j)*hit3})

end do

else if(sum.ne.0.) then

fi=i

end if

hi(i)=sum
end do

do i{=n,l,-1
sum=hi(i)
if(i.1t.n) then
do j=i+l,n
sum=sum-a(i,j)*hi(3)
end do
end if
hi(i)=sum/a(i,i)
end do
return
end
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APPENDIX C:

PROGRAM SPHMTRX: riads in reduced nodal dynamical matrix and produces
dynamical matrix in terms of first seven Legendre polynomials

real pi,sum
real xx,yy,rr,ccos(6l)
real Dnod(62,62),P(61,7),Cinv(7,7),Pt(7,61),Dsph(8,8)

OLD FILES
open{unit=8,file='"transform.sph’,status='01d’)
open(unit=9,file~'reddynmtrx.dat’,status«'0ld’,form=’unformatted’)

NEW FILES
open(unit=12,file='Dsph.dat’,status="new’,form='unformatted’)
open(unit=13,file='Dsphl.lis’,status="new’)
open(unit=14,file="Dsph2.1lis’,status="new’)

pi=acos(-1.0)

READ IN COORDINATES OF ALL EXCEPT FIRST AND LAST SURFACE NODES
AND COMPUTE COS OF EACH ANGLE,
Note first node is at theta=pi and last node is at theta=0 where
theta ta the polar angle
do i=1,%9
read(8,'(2£f10.8)') xx,yy
re=sgrt(xx*e24yys+2)
ccos(i+l)=yy/rr
end do
ccos{l}=-1.0
ccos(61)=1.0

UNFORMATTED READ IN REDUCED DYNAMICAL MATRIX Dnod(62,62)
do i=1,62

read(9){(Dpnod(i,j),j=1,62)
end do

COMPUTE NODAL DISPLACEMENT TRANSFORMATION MATRIX, P(61,7), USING THE
FIRST 7 LEGENDRE POLYNOMIALS EVALUATED AT COS(NODE3) THRU COS(NODE183)
Compute zeroth through sixth order Legendre polynomials
do i=1,61

c2=ccos(i)**2

P(i,1)=1.0

P(1,2)=ccos(i)

P(i,3)=(3.0%c2-1.0)/2.0

P(i,4)=((5.0%c2-3.0)*ccos(i)})/2.0

P(1,5)=((35.0%c2-30.0)*c2+3.0)/8.0

P(i,6)=(((63.0%c2-70,0)*c2+15.0)*ccos(1))/8.0

dPéi,?)-(((231.0*c2—315.0)'c2+105.0)‘62—5.0)/16.0
end do

COMPUTE TRANSPOSE OF NODAL DISPLACEMENT TRANSFORMATION MATRIX Pt(7,61)
do i=1,7
do j=1,61
Pt(i,j)'P(jui)
end do
end do

COMPUTE INVERSE OF LEGENDRE POLYNOMIAL NORMALIZATION CONSTANTS Cinv(7,7)
do i=1,7
do j=1,7
Cinv(i,j)=0.0
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end d
cinv(i, i)-2 0/(2%(i-1)+1)
end do

gouiurs UPPER LEFT Tx7 BLOCK OF Dsph(a,ay-c1nv(7,7)-Pt(7,61)*Dnod(61,61)
o i=1,7
do §=1,7
sum-o 0
do k=1,7
do n-l 61
do n=1,61
sum-sum+cinv(i k) *Pt(k,m)*Dnod{m,n)*P(n,})
end do
end do
end do
psph(i,j)=sum
end do
end do

COHEUTE UPPER RIGHT 7x1 BLOCK OF Dsph(8,8)-cinv(7,7)'Pt(?,Gl)*Knod(Gl,l)
do i=1,7
sum=0.0
do j=1,7
do k=~1,61
sum-sum+cinv(i,3)*Pt(j k)*pnod(k,62)
end do
end do
Dsph{i,8)=sum
end do

COMPUTE LOWER LEFT 1x7 BLOCK OF Dsph(8,8)-Kn0dt(1,61)*P(61,7)
do j=1,7

sum=0.0

do k=1,61

sum-sum+Dnod(62 k)*P(k,3)

end do

Dsph{(8,j)=sum
end do

BLOCKED CAPACITANCE IS UNCHANGED
Dsph(8,8)=Dnod(62,62)

STORE Dsph{8,8)
do i=1,8

write(12)(Dsph(i,j),j=1,8)
write(13,10)(psph(i,j).ji=1,
write(ld,lO)(Dsph(l,j),j-5

end do

format(3x,4el17.7,//)

end

56




LIST OF REFERENCES

Varadan, V.V., and Varadan, V. K., "Configurations with Finite
Numbers of Scatterers -- A Self-Consistent T-matrix
Approach,” Journal of Acoustical Society of America, v. 70,
pp. 213-217, 13 March 1981.

Scandrett, C. L., and Canright, D. R., "Acoustic Interactions in
Arrays of Spherical Elastic Shells," submitted to Journal of
Acoustical Society of America.

Press, W. H., and others, Numerical Recipes, Cambridge
University Press, 1986.

Zienkiewicz, O. C., and Morgan, K., Finite Elements and
Approximation, John Wiley & Sons, Inc., 1983.

Naval Ocean Systems Center Report 1329, Contributions of

Individual Structural Modes to the Scattered Acoustic
Field, by G. W. Benthien, November 1989.

57




INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Superintendent

Naval Postgraduate School

ATTN: Chairman, Department of Physics (Code 61)
Monterey, California 93943-5000

Superintendent

Naval Postgraduate School

ATTN: Professor S. R. Baker (Code 61Ba)
Monterey, California 93943-5000

Superintendent

Naval Postgraduate School

ATTN: Professor D. R. Canright (Code 53Ca)
Monterey, California 93943-5000

Superintendent

Naval Postgraduate School

ATTN: Professor C. L. Scandrett (Code 53Sd)
Monterey, California 93943-5000

Superintendent

Naval Postgraduate School

ATTN: Professor O. B. Wilson (Code 61WiI)
Monterey, California 93943-5000

58




10.

11.

12.

13.

14.

15.

Commanding Officer

Naval Ocean Systems Center
ATTN: George Benthien (Code 712)
San Diego, California 92152-5000

Commanding Officer

Naval Underwater Systems Center
ATTN: Roger Richards (Code 213)
New London, Connecticut 06320

Commanding Officer
Naval Research Lab-USRD
ATTN: Robert Timme
Orlando, Florida 32856

Commanding Officer
Naval Research Lab-USRD
ATTN: Michele McCollum
Orlando, Florida 32856

International Transducer Corporation
ATTN: Mr. Ender Kuntsal

869 Ward Drive

Santa Barbara, California 93111

institut superieur d'electronique du nord
41 Blvd Vauban

ATTN: Jean-Noel Decarpigny

59046 Lille, Cedex, France

institut superieur d'electronique du nord
41 Bivd Vauban

ATTN: Bernard Hamonic

59046 Lille, Cedex, France

Commanding Officer

Fleet Combat Training Center, Atlantic
ATTN: LT. Kathieen A. McLean

Virginia Beach, Virginia 23461-5200

59




